This study investigated the role of the endogenous opioid system in maternal and affiliative behavior of group-living rhesus macaque (Macaca mulatta) mothers with a history of abusive parenting. Eighteen mothers received an injection of the opioid antagonist naltrexone or saline for 5 days per week for the first 4 weeks of the infant's life. After treatment, mother–infant pairs were focally observed. Naltrexone did not significantly affect infant abuse or other measures of maternal behavior. Naltrexone increased the amount of grooming received by mothers from other group members and reduced the mothers' rate of displacement activities such as scratching, yawning, and self-grooming. These results concur with previous primate studies in suggesting that opioids mediate the rewarding effects of receiving grooming and affect anxiety-related behaviors.

Attachment is an emotional bond to another individual that is characterized by proximity-seeking and proximity-maintaining behavior as well as intense distress in response to separation (Bowlby, 1969). Different forms of attachment are usually recognized in both animals and humans, including offspring–parent attachment, parent–offspring (parental) attachment, and attachment between adults (adult attachment). Although these different forms of attachment are characterized by similar behaviors, it is not clear whether they share underlying neurobiological substrates because of the lack of relevant data or the inconsistency of the findings, particularly with regard to parental attachment (Carter, 1998; Maestripieri, 2001; Mason & Mendoza, 1998; Nelson & Panksepp, 1998; see the following).

The endogenous opioid system is one putative neurochemical substrate of attachment that may be shared by different forms of bonding (other putative substrates include, for example, the neuropeptides oxytocin and vasopressin; Carter, 1998; Insel, 1997; Nelson & Panksepp, 1998). Based on similarities between attachment and opiate addiction, it has been hypothesized that a release of endogenous opioids mediates the rewarding properties of attachment, whereas a reduction in endogenous opioids results in emotional distress and drives the need to seek and maintain proximity with the attachment object (Panksepp, 1981). According to this hypothesis, exogenous opiates such as morphine should create a feeling of social comfort and reduce the motivation to seek social contact, whereas opiate receptor blockers such as naltrexone or naloxone should increase the motivation to seek social contact. This hypothesis has been supported by many studies of nonprimate animals such as rats, voles, guinea pigs, and chicks (Nelson & Panksepp 1998; Panksepp, Herman, Vilberg, Bishop, & DeEskinazi, 1980; Panksepp, Nelson, & Siviy, 1994). For example, work with rats has shown that physical contact and other types of social stimuli are associated with opioid release, and that opioid agonists are effective in decreasing isolation-induced vocalizations (see Nelson & Panksepp, 1998, for a recent review). On the basis of this research, Panksepp and colleagues suggested that the motivation for attachment may be dependent on specific brainstem and limbic circuits in the mammalian brain that originally subserved basic physiological needs such as energy balance, thermoregulation, or pain perception (e.g., Nelson & Panksepp, 1998).

Studies of nonhuman primates have supported the hypothesis that the opioid system is implicated in adult attachment as well as in offspring–parent attachment. However, the role of opioids in parental attachment is less clear. Research by Keverne and colleagues showed that adult talapoin monkeys treated with naltrexone or naloxone increased grooming solicitations of their social partners and received more grooming (Fabre-Nys, Meller, & Keverne, 1982; Keverne, Martensz, & Tuite, 1989; Meller, Keverne, & Herbert, 1980). Conversely, treatment with morphine resulted in a reduction of grooming solicitations and grooming.

---

Franklynn C. Graves and Kim Wallen, Department of Psychology, Emory University and Yerkes Regional Primate Research Center, Atlanta, Georgia; Dario Maestripieri, Institute for Mind and Biology, University of Chicago.

This research was supported by National Institutes of Health (NIH) Grants R01-MH57249, R01-MH62577, and K02-MH63097 to Dario Maestripieri; R01-MH50268 and K02-MH01062 to Kim Wallen; a National Science Foundation Graduate Research Fellowship to Franklynn C. Graves; and NIH Grant RR-00165 to the Yerkes Regional Primate Research Center. The Yerkes Center is fully accredited by the American Association for Accreditation of Laboratory Animal Care. We thank Jessica Ganas, Richelle Fulks, Nancy Megna, and Kai McCormack for assistance with the experimental procedures.

Correspondence concerning this article should be addressed to Dario Maestripieri, Institute for Mind and Biology, University of Chicago, 5730 South Woodlawn Avenue, Chicago, Illinois 60637. E-mail: dariomas@uchicago.edu
time (Keverne et al., 1989). When socially isolated adults were
allowed access to a conspecific, there were increases in the amount
of time spent grooming as well as in the cerebrospinal fluid (CSF)
levels of β-endorphin (Keverne et al., 1989). Finally, in rhesus
macaques, naloxone increased the number of grooming solicita-
tions and the amount of grooming received by adult females from
other individuals (Martel, Nevison, Simpson, & Keverne, 1995).

Taken together, the findings of these studies are consistent with
the hypothesis that endogenous opioids may mediate the rewarding
properties of affiliative interactions between adults.

Studies manipulating the opioid system of immature monkeys
have produced results consistent with the hypothesized relation
between opioids and attachment (Kalin, Shelton, & Barksdale,
1988; Kalin, Shelton, & Lynn, 1995; Martel et al., 1995; Schino &
Troisi 1992). Thus, infant attachment and adult attachment appear
to share a common neurochemical substrate (Nelson & Panksepp,
t1998). The role of the opioid system in mediating maternal attach-
ment to the infant has been investigated in only two primate
studies that reported conflicting results. In one study, the opioid
system was pharmacologically manipulated after mother–infant
separation and reunion in rhesus macaques (Kalin et al., 1995).

Morphine decreased clinging with the infant during the first 30
min of reunion, whereas naltrexone increased clinging. In a study
of socially living rhesus mothers and infants, however, naloxone
reduced both maternal grooming and maternal restraining of the
infant, suggesting decreased rather than increased attachment to
the infant (Martel, Nevison, Rayment, Simpson, & Keverne 1993).

The effects of naloxone on affiliative interactions between mothers
and other adults, however, were also contrary to the expectations.
In fact, the mothers treated with naloxone showed reduced number
of grooming solicitations and reduced amount of grooming re-
ceived from other individuals. Because the study by Martel et al.
(1993) contradicted findings that are well established in the pri-
mate literature on opioids and grooming behavior (previously
mentioned), the results of that study are generally difficult to
interpret. Clearly, further research on opioids and maternal behav-
ior is needed before any firm conclusions can be drawn regarding
the role of opioids in mediating maternal attachment.

In the present study, we investigated the effects of naltrexone
on the behavioral interactions of rhesus macaque mothers with their
infants and other group members. Consistent with the opioid
hypothesis of attachment, we predicted that the effects of naltrex-
one on affiliative interactions between mothers and other group
members would be similar to those reported by most previous
primate studies. In other words, we predicted that naltrexone-
treated mothers would increase the number of grooming solicita-
tions and the amount of grooming received from other individuals
(no specific prediction was made about grooming performed). We
also predicted that the effects of naltrexone on maternal attachment
to the infant would be similar to those on adult attachment. In other
words, we predicted that mothers would increase their contact-
seeking and contact-maintaining behavior with their infants.

In this study, we also investigated the possible role of the opioid
system in abusive parenting. The rhesus macaque mothers used in
this study were specifically selected for their propensity to display
abusive parenting with their infants (Maestripieri, 1998; Maestri-
peri & Carroll, 1998b). Because abusive parenting may reflect
lower maternal attachment to the infant, we hypothesized that if
the treatment with naltrexone is effective in increasing maternal
attachment, it should also reduce or eliminate infant abuse. Finally,
in this study we also investigated the effects of naltrexone on
macaque mothers’ anxiety, as reflected in their rates of displace-
ment activities such as scratching, self-grooming, body shaking,
and yawning (Maestripieri, Schino, Aureli, & Troisi, 1992; Schino,
Perretta, Taglioni, & Troisi, 1996). In macaques, maternal anxiety
plays an important role in both individual differences in parenting
style and in the etiology of infant abuse (Maestripieri, 1993a;
Maestripieri & Carroll, 1998a; Troisi & D’Amato, 1984; Troisi et
al., 1991). For example, treatment of a Japanese macaque mother
with diazepam reduced both anxiety and infant abuse (Troisi &
D’Amato, 1991). Previous studies of primates reported that nal-
oxone or naltrexone reduced the frequency of scratching (Fabre-
Nys et al., 1982; Martel et al., 1995) and self-grooming (Schino &
Troisi, 1992). On the basis of such studies, we predicted that the
administration of naltrexone to macaque mothers would affect
their rates of displacement activities and perhaps contribute to
the reduction or elimination of anxiety-related infant abuse.

Method

Subjects and Housing

Subjects were 18 rhesus macaque (Macaca mulatta) mothers and their
infants living in five large social groups at the Field Station of the Yerkes
Regional Primate Research Center in Lawrenceville, Georgia. All ma-
caques were housed in outdoor compounds (measuring 38 × 38 m) with
adjacent indoor housing. The five groups averaged 103 members consisting
of 1–3 adult males and 26–57 adult females with their subadult and
juvenile offspring. Water was available ad libitum. Macaques received
monkey chow (Ralston-Purina, St. Louis, MO) twice daily and were
supplemented with oranges once per day. Dominance relationships among
the adult females in each group were assessed with observations of ag-
gressive and submissive behavior made prior to this study. Adult females
in each group were ranked along a linear dominance hierarchy that re-
mained stable during the course of the study. Adult females were classified
as high ranking or low ranking depending on whether they ranked in the
top half or bottom half of their group’s hierarchy.

In the population of rhesus macaques housed at the Yerkes Field Station,
20–25 adult females have been identified who physically abuse their
offspring (Maestripieri & Carroll, 1998b; definitions of infant abuse are
described later). Infant abuse is clearly distinguishable from any other
behavior in the maternal repertoire, and abusive mothers abuse their
offspring with similar rates over the years (Maestripieri, Tomaszczyk, &
Carroll, 1999). The 18 adult females used as study subjects had been
observed in previous years and determined to be abusive mothers. Abusive
mothers were recruited into the study as they gave birth. All subjects were
born and raised by their biological mothers in the groups in which they
were observed. They were all multiparous and had successfully raised at
least one offspring prior to this study. Information about their age, rank,
and the sex of their infants is provided in the Results section.

Procedure

As soon as they gave birth, abusive mothers were randomly assigned to
one of two experimental groups (n = 9 per group): Mothers in the first
group (subjects) received a daily injection of naltrexone (1 mg/kg im) 5
days per week during the first 4 weeks of infant life, whereas mothers in
the second group (controls) received an equivalent volume of saline with
a similar schedule. Preliminary analyses indicate that subjects and controls
did not differ significantly in their rates of infant abuse with their previous
offspring. The dose of naltrexone was chosen on the basis of previous
studies of macaques showing that such a dose can affect behavior without
Rank subjects: high rank (H11005) / low rank (H11005).

Subjects and Controls

Mean (± SEM) Hourly Rates of Mother–Infant Interactions in Subjects and Controls

<table>
<thead>
<tr>
<th>Behavior</th>
<th>Subjects</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>M makes contact</td>
<td>1.76 ± 0.33</td>
<td>1.69 ± 0.26</td>
</tr>
<tr>
<td>M breaks contact</td>
<td>1.56 ± 0.27</td>
<td>1.65 ± 0.44</td>
</tr>
<tr>
<td>I makes contact</td>
<td>0.75 ± 0.25</td>
<td>0.59 ± 0.19</td>
</tr>
<tr>
<td>I breaks contact</td>
<td>3.49 ± 0.51</td>
<td>3.54 ± 0.40</td>
</tr>
<tr>
<td>M restraints</td>
<td>0.60 ± 0.19</td>
<td>0.73 ± 0.38</td>
</tr>
<tr>
<td>M rejects</td>
<td>0.41 ± 0.12</td>
<td>0.82 ± 0.36</td>
</tr>
<tr>
<td>M grooms</td>
<td>1.90 ± 0.39</td>
<td>3.13 ± 0.69</td>
</tr>
<tr>
<td>I screams</td>
<td>1.18 ± 0.38</td>
<td>1.39 ± 0.72</td>
</tr>
<tr>
<td>M abuses</td>
<td>0.34 ± 0.11</td>
<td>0.82 ± 0.36</td>
</tr>
</tbody>
</table>

Note. M = mother; I = infant.

Table 1

To validate the pooling of data across the 4 weeks of treatment and observation, we conducted a repeated measures analysis of variance (ANOVA) across weeks. No time-dependent effects of naltrexone were found for any behavioral measure. When the data were pooled across the 4 weeks, subjects and controls did not differ significantly in rates of infant abuse or in any measures of mother–infant interactions (see Table 1). No significant differences were found in interactions between infants and other group members or between mothers and other females’ infants. Finally, there were no significant differences in measures of contact, proximity, or aggression and submission between mothers and other group members.

As predicted, naltrexone-treated mothers received more grooming from other individuals than controls (t test for unpaired samples, t(16) = 1.78, p < .05 (one-tailed), whereas the amount of grooming performed was not significantly different, t(16) = −0.17 (see Figure 1). There were no significant differences in the frequency of grooming solicitations done or received by subjects and controls.

The rates of three of four displacement activities were significantly lower among subjects than controls: scratching, t(16) = −4.39, p < .01; self-grooming, t(16) = −3.18, p < .01; yawning, t(16) = −4.58, p < .01; body shaking, t(16) = −1.52, ns (see Figure 2). In particular, the rate of maternal scratching when the infant was out of contact was significantly lower for subjects (0.72 ± 0.25) than for controls (2.40 ± 1.97), t(16) = −3.05, p < .01.

Discussion

The administration of the opioid receptor blocker naltrexone to rhesus macaque mothers who physically abuse their offspring affected their grooming interactions with other group members and their rates of displacement activities, but did not affect abusive behavior or any other interactions with their offspring. Naltrexone-treated mothers received higher amounts of grooming from other individuals than controls, but grooming performed was not affected by the treatment. The effects of naltrexone on grooming behavior, although not strong, were consistent with those reported

Figure 1. Mean (± SEM) amount of grooming done and received by subjects and controls per hour per individual.
attachment is not affected by manipulations of the opioid system. Both of these hypotheses need to be addressed by future research. Primate studies of opioids and maternal attachment have provided inconsistent results: Kalin et al. (1995) reported that naltrexone increased maternal attachment; Martel et al. (1993) reported that naloxone decreased it; and this study reports no significant effects of naltrexone on any mother–infant interactions. Although some of these inconsistencies may be due to methodological differences among these studies, the role of the opioid system in mediating primate maternal attachment remains unclear.

The strongest behavioral effects of naltrexone in this study occurred with displacement activities such as scratching, self-grooming, and yawning. These effects are unlikely to reflect a general reduction in activity levels because other activities, such as approaching other individuals and aggression, were not affected by naltrexone. However, these effects may be, at least in part, mediated by increased grooming received by naltrexone-treated mothers. Similar reduction of scratching and self-grooming was also reported by previous studies in which similar doses of naltrexone or naloxone produced no side effects on activity levels (Fabre-Nys et al., 1982; Schino & Troisi, 1992). The relation between opioids and anxiety in primates needs to be investigated further. If future studies confirm the anxiolytic effects of opioid receptor blockers reported here, this could represent a further avenue for the investigation of the relation between opioids and attachment in primates. In fact, separation anxiety plays an important role in attachment processes (Bowlby, 1969), and it is possible that the role of opioids in maternal attachment is mediated by their effects on anxiety. Further studies should also investigate the effects of different doses of opiate agonists and antagonists on primate attachment and anxiety, and explore the possibility that different doses of these drugs may have different or opposite effects on these variables.

References


Received August 13, 2001
Revision received December 4, 2001
Accepted December 20, 2001

Wanted: Your Old Issues!

As APA continues its efforts to digitize journal issues for the PsycARTICLES database, we are finding that older issues are increasingly unavailable in our inventory. We are turning to our long-time subscribers for assistance. If you would like to donate any back issues toward this effort (preceding 1982), please get in touch with us at journals@apa.org and specify the journal titles, volumes, and issue numbers that you would like us to take off your hands.